UPenn Researchers Repair Nasal Septums

 Nose Model printed on an Allevi 2 with PCL. 

Nose Model printed on an Allevi 2 with PCL. 

In this publication,Dr. Chamith S. Rajapakse‘s Lab at the University of Pennsylvania uses an Allevi 2 (previously BioBot 1) to fabricate 3D models of patient-specific bone grafts for nasal septal perforation repair with polcaprolactone (PCL). 

Abstract: Nasal septal perforations (NSPs) are relatively common. They can be problematic for both patients and head and neck reconstructive surgeons who attempt to repair them. Often, this repair is made using an interpositional graft sandwiched between bilateral mucoperichondrial advancement flaps. The ideal graft is nasal septal cartilage. However, many patients with NSP lack sufficient septal cartilage to harvest. Harvesting other sources of autologous cartilage grafts, such as auricular cartilage, adds morbidity to the surgical case and results in a graft that lacks the ideal qualities required to repair the nasal septum. Tissue engineering has allowed for new reconstructive protocols to be developed. Currently, the authors are unaware of any new literature that looks to improve repair of NSP using custom tissue-engineered cartilage grafts. The first step of this process involves developing a protocol to print the graft from a patient's pre-operative CT. In this study, CT scans were converted into STereoLithography (STL) file format. The subsequent STL files were transformed into 3D printable G-Code using the Slic3r software. This allowed us to customize the parameters of our print and we were able to choose a layer thickness of 0.1mm. A desktop 3D bioprinter (BioBot 1) was then used to construct the scaffold. This method resulted in the production of a PCL scaffold that precisely matched the patient’s nasal septal defect, in both size and shape. This serves as the first step in our goal to create patient-specific tissue engineered nasal septal cartilage grafts for NSP repair.

Dominick Gadaleta et al "Fabrication of custom PCL scaffold for nasal septal perforation repair", Proc. SPIE 10579, Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, 1057908 (6 March 2018); https://doi.org/10.1117/12.2293820